Influence of Temperature on Transdermal Penetration Enhancing Mechanism of Borneol: A Multi-Scale Study

نویسندگان

  • Qianqian Yin
  • Ran Wang
  • Shufang Yang
  • Zhimin Wu
  • Shujuan Guo
  • Xingxing Dai
  • Yanjiang Qiao
  • Xinyuan Shi
چکیده

The influence of temperature on the transdermal permeation enhancing mechanism of borneol (BO) was investigated using a multi-scale method, containing a coarse-grained molecular dynamic (CG-MD) simulation, an in vitro permeation experiment, and a transmission electron microscope (TEM) study. The results showed that BO has the potential to be used as a transdermal penetration enhancer to help osthole (OST) penetrate into the bilayer. With the increasing temperature, the stratum corneum (SC) becomes more flexible, proving to be synergistic with the permeation enhancement of BO, and the lag time (TLag) of BO and OST are shortened. However, when the temperature increased too much, with the effect of BO, the structure of SC was destroyed; for example, a water pore was formed and the micelle reversed. Though there were a number of drugs coming into the SC, the normal bilayer structure was absent. In addition, through comparing the simulation, in vitro experiment, and TEM study, we concluded that the computer simulation provided some visually detailed information, and the method plays an important role in related studies of permeation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Menthol towards 5-FU

Borneol and menthol were two terpenes wildly used as penetrate enhancer in 14 transdermal drug delivery. To explore their penetration enhancement effect towards hydrophilic 15 drug, 5-FU was selected as model drug. A method combined vitro permeation studies and coarse 16 grain molecular dynamics was used to investigate their penetration enhancement effect towards 17 5-FU. As a result, although ...

متن کامل

A Molecular Interpretation on the Different Penetration Enhancement Effect of Borneol and Menthol towards 5-Fluorouracil

Borneol and menthol are terpenes that are widely used as penetration enhancers in transdermal drug delivery. To explore their penetration-enhancement effects on hydrophilic drugs, 5-fluorouracil (5-FU) was selected as a model drug. An approach that combined in vitro permeation studies and coarse-grained molecular dynamics was used to investigate their penetration-enhancement effect on 5-FU. The...

متن کامل

Interactions of Borneol with DPPC Phospholipid Membranes: A Molecular Dynamics Simulation Study

Borneol, known as a "guide" drug in traditional Chinese medicine, is widely used as a natural penetration enhancer in modern clinical applications. Despite a large number of experimental studies on borneol's penetration enhancing effect, the molecular basis of its action on bio-membranes is still unclear. We carried out a series of coarse-grained molecular dynamics simulations with the borneol ...

متن کامل

Effects of Concentrations on the Transdermal Permeation Enhancing Mechanisms of Borneol: A Coarse-Grained Molecular Dynamics Simulation on Mixed-Bilayer Membranes

Borneol is a natural permeation enhancer that is effective in drugs used in traditional clinical practices as well as in modern scientific research. However, its molecular mechanism is not fully understood. In this study, a mixed coarse-grained model of stratum corneum (SC) lipid bilayer comprised of Ceramide-N-sphingosine (CER NS) 24:0, cholesterol (CHOL) and free fatty acids (FFA) 24:0 (2:2:1...

متن کامل

Development and Optimization of Transdermal System of Lisinopril dehydrate: Employing Permeation Enhancers

      Lisinopril dihydrate (angiotensin converting enzyme inhibitor) is a lysine derivative of enalaprilat and does not require hydrolysis to exert pharmacological activity. It has an extensive hepatic first pass metabolism resulting in a bioavailabil-ity of 6-60%. To overcome the poor bioavailability of the drug, transdermal patches have been prepared. The present study also aims at optimizati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017